
Design and implementation of the AGTS
Probabilistic Tagger

Hong Liang Qiao
Norwegian Computing Centre for the Humanities

Renjie Huang
Jiao Tong University

1 Introduction
The last ten years have seen the development of several probabilistic
taggers, such as the PARTS program (Church 1988), the De Rose tagger
(De Rose 1991), the Brill tagger (Brill and Marcus 1992) and the Xerox
tagger (Cutting et al 1993). The AGTS (The Automatic Grammatical
Tagging System) Tagger was a key project funded by China Social
Science Academy. It was undertaken at the laboratory for Computational
Linguistics of the Institute for Natural Language Processing of Jiao Tong
University in Shangha, from 1987 to 1990. The basic techniques of the
AGTS tagger are very similar to the CLAWS tagger in terms of the
principles of Constituent Likelihood Grammar (Atwell 1987). One the
of purposes of the AGTS project is to tag the JDEST (Jiao Da English
for Science and Technology) Corpus, which consists of one million
words. The JDEST Corpus was built up by Jiao Tong University in
Shanghai in 1985. The JDEST Corpus collected English texts covering
ten subject areas in science and technology: physics, nuclear energy,
metallurgy, computer science, aeronautics, mechanics, electrical engineer-
ing, chemical engineering, architectural engineering and shipbuilding.
The texts were randomly selected from theses, textbooks, academic
works, popular science and science digests, published in the United
Kingdom, the United States and other countries. The corpus consists of
2,000 units of about 500 words each. The size of the JDEST Corpus
is over 1,000,000 words. The sizes of the units and the entire corpus
are very similar to those of the Brown Corpus of American Written
English. The AGTS has experienced changes of its programming languages
from BASIC to SNOBOL, and then to Turbo C.

23

2 The Structure of the System
The general structure of the AGTS System is made up of two parts,
namely the data and the programs. The data are in fact the corpus, tags,
a machine dictionary, rules and a probabilistic matrix database. The
programs control the processes step by step. They retrieve, recognise,
compare and judge the data and output from raw texts to tagging results.
The following figure depicts the general structure of the AGTS System:

3 The AGTS Tagset
The tags in the AGTS Tagset are basically similar to the tags used for
the LOB Corpus. The reason for adopting LOB tags is that it makes
it easier to compare the results of the research with the results of the
LOB Corpus tagging project. It is not only beneficial to evaluate the
results and efficiency of the AGTS System later on, but it is also helpful
for comparative research in contrasting corpus linguistic studies between

Corpus

Rule-base

Automatic Tagging

Customer

Checking system

 Interface

Machine
dictionary

Probabilistic
 matrix data

Algorithms & Programs

Figure 1: General structure of AGTS system

24

English for science and technology purposes and English for more
general purposes. In the LOB Corpus there are 130 tags, compared to
131 in the AGTS system. Most of the tags in the two tagsets are the
same. However, some changes were made; for instance, the Lancaster
tag ‘XNOT’ was changed to ‘NT’ in the AGTS tagset. In treating idioms
or special phrases, the Lancaster method uses one of the major tags as
labels to all tags and also attaches serial numbers to the tags. The
AGTS System keeps the original word class of each tag in the idiom.
For example, the determiner phrase a few is tagged by CLAWS ‘AP21
AP22’, and ‘AT AP ’ by AGTS. In ‘AP21 AP22 ’, ‘ AP’ means
post–determiner. ‘21 ’ and ‘22 ’ respectively indicate the first element of
the two and the second element of the two. ‘AT AP ’ indicates a
singular article followed by a post–determiner.

Each tag in the AGTS tagset consists of one to five characters and/or
numbers, eg ‘.’ for a full stop, CD for cardinal numbers except ‘one’,
JJT for a superlative adjective, NN$ for a possessive plural noun, and
PP3AS for a third person plural pronoun. The 128 tags in the AGTS
tagset are divided into three categories: 1) part–of–speech tags, 2)
punctuation tags, and 3) special tags.

3.1 Part of Speech Tags
Part of speech tags comprise the main share of the tags, with a total
of 114, which occupies about 87 per cent of the total. These tags are
represented by two to five characters and/or numbers. Compared to
traditional categories, they are divided into more detailed sub–categories.
With personal pronouns, for example, the tags are divided into ten
different kinds:

PP1A (I), PP1AS (we), PP1O (me), PP1OS (us);
PP2 (you);
PP3 (it), PP3A (he, she), PP3AS (they), PP3O (him, her), PP3OS
(them).

For verbs, not only are the tags divided into BE(be), HV(have), MD
(modals) and VB(verbs), etc, but also suffixes are attached, such as Z
in VBZ for the third person singular present, D in VBD for the simple
past, N in VBN for the past participle, and G in VBG for the present
participle.

Tags in certain groups of categories can be recognised by either
prefixes or suffixes. In the tags listed above, all personal pronouns take

25

the prefix ‘PP’, the suffix ‘S’ means plural, ‘Z’ stands for third person
singular and present tense, and ‘A’ indicates subject case and ‘O’ object
case.

3.2 Punctuation Tags
We generally use the punctuation marks themselves as punctuation tags,
eg ‘.’ (not including the quotation marks) for full stop, ‘;’ for semi-colon,
‘!’ for exclamation mark, *’’ for opening quotation mark and **’’ for
closing quotation mark. A single asterisk indicates opening quotation
mark, while a double asterisk indicates closing. There are 13 punctuation
tags, which usually consist of one to three characters.

3.3 Special Tags
There are only four special tags, which consist of two to three characters.
&FO means ‘formula(e)’, &FW ‘foreign word(s)’, ZZ English letters and
‘---’ is a sentence separating tag, which is a tag that is not included
in the LOB tagset.

Tags are normally attached to individual words, rather than to a pattern
or an idiomatic phrase consisting of more than one word. On the whole,
this resembles the practice of the CLAWS tagger:

in order to IN NN TO

In this way the word order will not be treated as a verb, which is one
of its possible tags (order can be a noun or a verb according to different
situations). In and to will also not be confused by taking adverb and
preposition, respectively, as other possibilities. These idiomatic phrases
are stored in a special dictionary to avoid unnecessary ambiguity.

4 Grammatical Data for Tagging
A correct part of speech (POS) tag assignment to each word in a running
text requires several types of grammatical analysis. In AGTS, a machine
dictionary, a second-order Markov grammar rule file for disambiguation
and probabilistic matrix data have been designed to cope with different
tasks in tagging.

4.1 Machine Dictionary
The machine dictionary includes a special wordlist, a prefix list and a

26

suffix list. The most frequent 12,000 English words in the JDEST Corpus
are taken as entries in the machine dictionary. These words cover more
than 97 per cent of the corpus.

4.2 Suffix List
The grammatical identity of a word is closely related to its suffix.
Therefore, suffixes can be useful in judging the part of speech of a
word. For example, words with the suffix – tion are most probably
nouns, with rare exceptions such as – mention, which can also be a
verb. Suffixes like – est can very often be superlative adjectives, eg
best, fastest and earliest, of course, with exceptions like rest, interest
and request. Words with the suffix – able are very often adjectives. If
a word ends with – ly, the word is most likely an adverb. Altogether,
there are some 600 suffixes in the suffix list. Besides normal suffixes
like – ment, – wide and – or, which are supposed to be traditional
suffixes described in morphology, the suffix list also includes strings
which can function as word terminations, although, strictly speaking,
they are not suffixes according to word-formation theory. In other words,
suffixes in the suffix list as defined here are different from the suffixes
in the sense of conventional morphology. As a matter of fact, they are
treated as word-ending strings. POS tags are then attached to the suffixes
in the suffix list according to a study of the most likely word-classes
that belong to them, eg:

 rm (NN, VB) – storm, term and form

For instance, rm is linguistically not usually seen as a suffix. However,
computationally it is helpful to suggest words as singular noun, or
present and plural (ie not singular) verb.

4.3 Special Wordlist

If the tag(s) belonging to a word’s suffix are exactly the same as the
tag(s) of a certain word in the dictionary with exactly the same suffix
and the same tag(s), then the word is deleted from the dictionary, so
that the words left in the dictionary form a special wordlist.

For instance, here is a suffix list and a dictionary:

Suffix List Dictionary

27

Suffix Tags No. Tokens Tags

–ed VBD VBN (1) bed NN

(2) indeed RB

(3) led VBD VBN (deleted)

(4) need VB NN MD

(5) seed NN VB

(6) worked VBD VBN (deleted)

Figure 2: Suffix list and a dictionary

Only led and worked meet the criterion for a past tense verb, so, they
are deleted, even though the ed in led is NOT a genuine suffix. The
special wordlist contains about 4,000 types, with a maximum of five
possible different tags for an individual word.

There are three types of errors that qualify a word as an entry in the
special wordlist – erroneous (totally mismatch), superfluous (containing
extra tags) and omitted tags (not containing the required tags). Below
is an example:

words suffixes
tags assigned
by suffixes

actual pos-
sible tags error types

mention -tion NN VB NN omitted

explosive -sive JJ JJ NN omitted

converter -ter NN JJ NN superfluous

describe -be NN VB VB superfluous

friendly -edly RB JJ erroneous

flee -ee NN VB erroneous

Figure 3: Types of errors in a dictionary for establishing a special wordlist

If a word ending in -tion has both VB and NN as its part-of-speech
tags in the dictionary, then NN is left out, leaving ‘the tags assigned
by suffixes’ not indentical with ‘the actual possible tags’. In this case,
that word becomes an entry in the special dictionary. The same happens

28

to the superfluous (contrary to the omitted type) and erroneous tags.
Most function words, eg would and could, cannot be tagged according

to the suffix list. Therefore they are included in the special wordlist.

4.4 Prefix List

The prefix list contains a list of prefixes for the purpose of a second
special wordlist look-up. The prefix list is constructed on the basis of
morphology. For example, if the word Sino-Anglo cannot be located in
the special dictionary, while the word Anglo is present, Anglo can then
be matched, if the prefix Sino is removed. Therefore the search is
successful. The prefixes mentioned here, like those suffixes mentioned
in 4.3, may not be regular morphological prefixes.

4.5 Context Frame Grammar Rules for Tag Disambiguation

The Context Frame Grammar Rules (CFGR) are designed according to
first- and second-order models Markov Models. For example:

1. A + B + ? + C + D --> ~Y

2. A + B + ? + C + D --> ~Y

Rule 1 means that if an undetermined word (in the form of a question
mark in the above examples), ie a word with multiple possible tags, is
between tag A and tag B on the left and tag C and tag D on the right,
and Y is one of the possible tags, then Y is selected. Rule 2 means
that, under the same conditions as in Rule 1, tag Y should be excluded
or deleted from the possible tags. We call the rules of type 1 positive
rules and those of type 2 ‘negative rules’. Of the four known items A,
B, C and D, up to three can be omitted, so that six types can be
derived:

Rules Explanations

29

1. First Order Pre-Position Rule
eg AT- + ? -> ~VB- After an article of any kind, all verb tags

are deleted.

2. Second Order Pre-Position Rule
eg CD + JJ + ? -> NNS After a cardinal number except 1 (whose

tag is CD1) and an adjective, the tag to
be selected is NNS (plural noun), if it is
one of the possible tags.

3. First Order Post-Position Rule
eg ? + VB -> MD If the tag MD is among the possible tags

and is directly before a verb in its
original form, then MD is selected.

4. Second Order Post-Position Rule
eg ? (such) + (a) + NN -> AP Before a and a singular noun, if the word

is such, then the tag AP (post-
determiner) from the possible tags is
selected. The lower case words in round
brackets are literal words.

5. First Order Mid-Position Rule
eg IN + ? + . --> NN-/VBG If a tag is between a preposition and a

full stop, the tag can either be a noun or
a present participle of a verb.

6. Second Order Mid-Position Rule
eg (as) + ? + (as) + (possible) - >RB/JJ If a tag is located between as and as

possible, it can either be a general
adverb or an adjective.

4.6 Probabilistic Matrix Data

By deriving statistical data from the tagged LOB Corpus, we constructed
a probabilistic matrix to account for the probability of a given tag
appearing after another. Supposing that there are two adjacent tags A
and B in the corpus, we can calculate the probabilistic value of tag B

30

after tag A. The formula is as follows:

Formula 1: Probabilistic value of the adjacent tag
nAB

P = --------------------- x 1000_

NA

NAB = number of occurrences of tag B immediately after tag A in
the whole corpus.
NA = number of occurrences of tag A in the whole corpus.
P = the probabilistic value, set to _.

According to the matrix, the P values of NN, JJ, RB, QL and
JJT preceded by AT (the singular article, eg a, an and every) are as
follows:

Table 1: Probabilistic values of NN, JJ, RB, QL and JJT preceded by AT

NN (singular noun) 526.4_

JJ (adjective) 369.9_

RB (general adverb) 19.9_

QL (degree adverb) 15.6_

JJT (superlative adjective) 9.7_

Note that LOB is a collection of British English texts of different types.
The matrix retrieved from LOB may therefore not be one hundred per
cent appropriate when applied to the tagging of JDEST Corpus, which
is a corpus of English texts purely for science and technology purposes.

5 The Design and Implementation of the AGTS System
Linguistic principles and computational algorithms for the system design
and implementation are divided into input text preparation, tag assignment,
rule matching and probabilistic finalising of the tags.

31

5.1 Input Text Preparation

The input text files for AGTS has a file name with .lib as its extension.
Each text in a file should have a text serial number at the beginning.
The following is a text in T1.lib of the JDEST Corpus:

T0001TP3A1972TE
Formulation of the Logic Design Problem.
The general procedure followed in any design
task starts by defining a behavior and other
specifications or characteristics of the system
to be designed. The latter are given as a
set of limiting values for the parameters
defining the system’s performance. For example,
if the task is to design a binary adder
(binary addition represents the behavior in this
case), the limiting factors could be: speed
less than 100 nanoseconds, operand length 32
bits, cost less than X dollars. With this
information the designer proposes an organization
of the system consistent with the given speci-
fications. He may, for example, propose in this
case of an adder design (discussed in detail
in Chapter 3), a serial version composed of
a 32 bit register, a full-adder, and a carry
flip-flop.

The first line of a text is the text serial number and the second line
is the title of the text. However, not all texts have a title in the second
line. The rest is the body of the text. A new paragraph always starts
with two spaces at the beginning of a line. There is no blank line
between texts and paragraphs.

5.2 Assignment of Possible Tags by Checking Wordlists

In phase 1, authentic texts (corpus texts and other input) are first
segmented into sentences and then into words. Possible tags are assigned
to words or other items according to the special wordlist, prefix list,
suffix list and special processing, like capitalised words processing and

32

S processing. In this phase, no contextual information is involved.

Figure 4: Assignment of possible tags by checking wordlists

This flow chart above should be interpreted as follows:
AGTS starts to read from the beginning of a text and inserts a sentence

separating mark (indicating the beginning of a sentence and a text).
Next, the program reads a string and tests whether this is the end of

the text. If it is, another sentence separating mark is attached at the
end of the text, which acts as a text and sentence ending mark, and

Corpus

Add sentence sparating mark
at the beginning of the texts

 Read in a string

End of text?

Punctuation mark?
Tag punctuation
 mark

Add sentence
separating mark

Return

Non-word string
?

Tag the word string

Tag the non-
word string

Add sentence
separating mark,
if it is the end of
the sentence.

No

Yes

Yes

No

Yes

No

33

phase 1 finishes. ‘Return’ in the flowchart means an end of the current
loop and the beginning of the next, if there is one.

However, if the string does not indicate the end of the text, the
program will check whether the string is a punctuation mark. If the
string is a punctuation mark, the program uses a special subroutine to
check if it is a sentence ending mark. If the string is the end of a
sentence, then a sentence separating mark will be inserted and the
program will read in a new string. If the string is not the end of a
sentence, the program will attach a punctuation tag to it and read the
next string.

If the string is not a punctuation mark, the program checks if it is
a non-word string. If it is a non-word string, it is tagged with a relevant
tag; else it must be a legal word and the system tags it with possible
tag(s), before reading in the next word.

The AGTS System attaches a proper tag to every English word,
punctuation mark and other strings. Since many English words play
different grammatical roles in different contexts, it is possible that a
word will take more than one tag. These are called ‘possible tags’. For
instance, work has two possible tags (NN and VB); present has three
possible tags (JJ, VB and NN); past has four – (JJ, NN, IN
and VBN); round has five – (JJ, NN, VB, RB and IN). At this
stage, we supply words with all possible tags through checking against
wordlists, without consideration of or interference from the context. This
phase is the assignment of possible tags. The suffix list, prefix list,
special list and pattern list provide the check data.

Now consider Figure 5. First, if the string is capitalised, then the
program will process it with a special processing program. Capitalised
words are checked to see if they are proper nouns or ordinary nouns,
as in a title or the beginning of a text, so that they can be further
processed in the tagging:
1) Capitalised words such as Australia and Chinese can be found in

the special wordlist and are then tagged according to that list.
2) Capitalised words at the beginning of the sentence are recognised

according to sentence separating marks and then converted to lower-
case to be processed.

Figure 5: Tagging the word string

3) Capitalised words in titles, such as Logic, Design, and System in
Formulation of the Logic Design System will treated as ordinary
nouns.

34

4) Fully capitalised words, such as FORTRAN and CPU will be tagged
as proper nouns.

Word string

Capitalization Process

SuccessfulReturn
Yes

Check special wordlist

Successful

 Check prefix list

Successful

Return

Cut off prefix

No

Yes

No

Yes

Check suffix list

No

Successful

 Return

Yes

S process

Successful Return

 Tag NN-VB-JJ

No

Yes

No

Return

35

The program then checks the special wordlist. If it finds an exact match,
it directly assigns possible tag(s) to it; otherwise, it checks against the
prefix list. The prefix is removed and then the word is tagged according
to the special wordlist again. If the tagging fails again, tags are assigned
according to the suffix list. Sometimes, when both VBZ and NNS occur
as tags of a word, it is processed it with the S sub-program to
disambiguate the two. If the tagger fails in all the matchings, the program
tags the word with a default tag (NN-JJ-VB). This default tag is an
artificial one, which consists of three ambiguous tags. The default tag
is created on the basis of the three top frequency tags in the LOB
Tagged Corpus.

Certain tags occur rarely and are labelled with rarity symbols, of
which there are two kinds. One is ’@’, which shows that the frequency
of the tag is less than ten per cent, and the other is ’%’, marking a
frequency of occurrence of less than one per cent. For example, pressure
is tagged with NN and VB@, which indicates that the possibility of VB
is less than ten per cent, and there is a more than 90 per cent chance
that the word is NN. Another example is even, which is tagged with
JJ, RB and VB%. Though even can be a verb, it functions as a verb
in less than one per cent of all cases.

The use of the suffix list of the AGTS System follows a length-priority
principle. Consider the following three suffix items:

-le NN

-ble NN VB

-able JJ

When the program is running, it looks for the four-letter suffix -able
first. If it matches the grammatical information of the word in the
dictionary, then JJ is assigned. If it fails, then the three-letter suffix
-ble is compared. NN and VB are assigned, if they match the word’s
grammatical information, and so on.

5.3 Disambiguation by CFGR Rules

After the first two steps, possible tags are attached to the words, among
which only one third have two or more than two tags. That is to say,
66 per cent of the words in the running text are labelled with an
unambiguous single tag. The Context Frame Grammatical Rules (CFG)

36

are supposed to disambiguate those still carrying multiple tags. The CFG
rules are based on two principles, which restrict and affect each other:

1) The CFG rules should create as many rules as possible, so that the
rules can cover a higher percentage in tag processing. In other
words, the rules are expected to do most of the work in tag
disambiguation.

2) When a new rule is created, it is expected to provide a good control
of leakage of the rules (ie the exceptions, which cannot be covered
or captured by general rules). Only when the rule meets these
requirements can it be collected in the CFG rule-base.

For example, consider a noun phrase with the following two rules:

noun phrase: a book a = AT book = NN VB

rules: a) AT- + ? --> NN b) AT- + ? --> ~VB-

Rule a) means that, after an article, the tag will be a noun if NN (noun)
is one of the possible tags, while rule b) means that, after an article,
verbs of any kind should be deleted from the tags that are attached to
that word. When we delete VB, the only tag left is NN. The results of
the two rules are the same, but when we look at another example with
two rules, things could be different:

noun phrase: a made story made = VBD VBN JJ

rules: a) AT- + ? --> NN b) AT- + ? --> ~VB-

Rule a) will not fire, because it cannot find an NN in the tags. Fortunately,
the rule will not make any mistakes in this case. Rule b) seems to be
safer by deleting VBD and VBN and leaving JJ as the single correct
tag. If rule b) is processed first, it will be more appropriate and efficient,
because when rule b) is checked and JJ is assigned as the single tag,
there is no need to go through other CFG rules. Therefore, this saves
computation load and time. In this particular case, negative rules are
more efficient than positive rules. Let us examine another example:

noun phrase: a Chinese text Chinese = JNP NN

37

rules: a) AT- + ? --> NN b) AT- + ? + NN- --> JNP

Rule a) considers only one tag before the target tag, and the rule’s
contextual environment is too small to make a better judgement than
b), which considers one tag on each side of the target tag, and is,
comparatively speaking, more powerful.

Three main methods are applied to control leakage from the rules (ie
the exceptions):

1) If more known items are added to the rules, more contextual
information can be applied to the rules. This can make the rules
more accurate and reduce leakage significantly. This indicates that
second order-rules are more powerful than first-order ones.

2) While tagging, the program will check rules by priority. If those
rules are able to solve the problem, other similar rules will not be
called, as in the case of ‘a made story’. The rules are not listed
in alphabetical order or by the length of the rules. Priority is given
to rules with a longer context. Second-order rules are applied before
first-order rules. Among the first order rules, mid-position rules are
executed before pre-position and post-position rules. The longer the
context, the more the known items, and the higher the reliability
in tag selection. This principle enables the program to deal with
exceptional cases.

3) Individual tag exceptions or pattern exceptions (eg a phrase containing
several tags) to the rules will be stored in a special wordlist and
each word will be assigned a single tag to avoid further processing
by CFG rules.

The judgement made by the rules may or may not be effective. The
solution can also be single or multiple tags. What should be emphasised
is that a chosen tag must be a possible and existing tag to the word,
and there can be more than one. If the rules cannot choose any tag(s)
for a word, and even if all other known items are exactly the same as
in the rules, the rule will not function. For example, if the pre-position
rule ‘AT- + ? --> NN ’ is applied to a phrase like a linguistic
seminar, in which the word linguistic is only labelled with a ‘JJ ’
(adjective) tag, the rule cannot find an ‘NN’ to match. Therefore it fails
to work. In other words, the rule was programmed to choose an ‘NN’
from possible tags, but unfortunately ‘NN’ is not available.

If a rule selects or deletes certain tag(s), leaving a single tag for a

38

word, this indicates the best performance of the rule. If there is more
than one tag left, the rule will be re-used until no further tags can be
deleted for the word.

Figure 6 shows the results from phase 1, which assigns all possible
tags by checking several kinds of wordlists. The system now reads in
a sentence and then checks if it is at the end of the text. If the word
is at the end of the text, the program stops; otherwise it checks if the
current word is marked with a unique tag. If the word is marked with
a unique tag, the system checks if it is the end of the current sentence.
If it is, the system reads in the next sentence. If not, it reads in the
next word.

If the word is tagged with more than one tag, the pattern list is
checked first. If it can be found in the pattern list, then the tags will
be assigned to the pattern. The program will now check if it is the end
of the sentence. If yes, it will read in another sentence. If not, it will
read in the next word.

If the word cannot be found in the pattern list, then the second order
rules will be checked. If this fails, the program will check mid-position
rules, pre-position rules, post-position rules and special rules (a small
number of rare rules that are not found in other rules) until the rules
are exhausted. If one of them matches, then are disambiguated the tags
and update the tagging results are updated. It should always make sure
whether the string is at the end of the sentence, no matter whether the
disambiguation is successful or not.

Through the tag selection by rules, the proportion of words with
unique tags rises to around 89 per cent, an increase of 23 per cent
from the figure before CFG rule selection. Checking reveals that errors
are no more than 0.3 per cent by rule disambiguation.

The following flowchart is a summary of the CFG rule selection
process:

5.4 The Probabilistic Selection

We have found differences in the frequency of the application of the
CFG rules. With further observation, somewhat unexpectedly, we noticed
that first order rules are of high frequency: 80 per cent of the tag
disambiguation judgements were made by these rules. The most frequently
used rules have the least contextual information. This phenomenon

39

Results from assigning
all possible tags

 Read a sentence

End of text?

Check current tag

Check pattern list

End of
current
sentence?

 New tag(s)

Successful

Successful

Check mid-position rules

Successful

Check pre-position and post-position rules

Successful

Check special rules

Successful

 Return

Yes

No

Yes

No

Yes

No

Yes

Yes

Yes

No

Yes

No

No

Unique tag?

Check second order rules

Figure 6: CFGR rule selection

40

indicates that the information of an adjacent tag actually plays the most
important role of all. This proves that the Constituent-Likelihood Grammar
based on the simple Markov first-order model is extremely powerful in
assigning part-of-speech tags.

The probabilistic matrix reflects the statistical relationship of two
adjacent tags. Therefore, the matrix can be successfully applied only
when adjacent words have only one tag assigned to them. However, in
practical processing, ambiguous or multiple tags to words do occur. The
number of words with ambiguous tags in a sequence is normally no
more than five. When they appear, the method to deal with them is as
follows: first, all different possible combinations are listed; then the
probabilistic values are retrieved from the matrix data and the multipli-
cation values of the different combinations can be calculated. The tags
with the highest multiplication value will be selected. For example, the
vertical display of the sentence There are four cutting tools is as follows:

--- ---

There EX

are BE

four CD

cutting VBG JJ NN@

tools NNS VBZ

. .

In this sentence, the words cutting and tools failed to obtain a single
tag after the rules were exhausted. The word four before the ambiguous
words and the full stop after them has a single unambiguous tag. In
this case, the system first had to find the paths or possible combinations
of the four tags. They are:
Figure 7: Paths of tags

That is to say, the tags can be arranged into six different paths according
the following formula:

Formula 2: Tag transition value

41

Val = p1 x p2 x ... x pn
p1, p2 and pn are the probabilistic values of up to n pairs of adjacent
tags. According to Formula 2, we can calculate the probabilistic value
of the six paths:

1. Val (CD-VBG-NNS-.) = 1.1 x 32.2 x 133.7 = 4735.7

2. Val (CD-VBG-VBZ-.) = 1.1 x 0.4 x 30.2 = 13.3

3. Val (CD-JJ-NNS-.) = 41.8 x 175.4 x 133.7 = 879655.1

4. Val (CD-JJ-VBZ-.) = 41.8 x 0.3 x 30.2 378.7

5. Val (CD-NN@-NNS-.) = 26.3 x (13.1 x 0.5) x 133.7 = 23031.8

6. Val (CD-NN@-VBZ-.) = 26.3 x (13.1 x 0.5) x 30.2 = 5202.4

Val = probabilistic value of path.

@ = symbol for rarity, where extra 0.5 the value in the matrix must be
multiplied to reduce the tag’s chance of being selected.

% = symbol for rarity, where extra 0.125 the value in the matrix must be
multiplied to reduce the tag’s chance of being selected.

The highest value is 879655.1, so the combination of group three is
selected. The tag for cutting is JJ and for tools NNS. We then come
to a finalised sequence of tags as follows:

--- ---

CD

VBG

NN@

NNS

VBZ

1
2

4

5
6

3
JJ .

42

There EX

are BER

four CD

cutting JJ

tools NN

. .

All other combinations, with much smaller chances of success, are
abandoned. The tagger can provide a list of combinations with descending
probability values to show the likelihood of each of the combinations.

6 A Tagging Experiment
The 100 sentences collected for the test are from 20 different citations.
They cover five different genres, ie news reportage (category a), biography
(category g), governmental documents (category h), scientific writing
(category j) and novels (category k). Altogether 2,202 strings are found
in the text, including 2,006 words and 196 punctuation marks. The
number of errors found are listed below:

Table 2: The index of the types of tagging errors

Wrong tag Correct tag Count Index

" " NNS 1 h08

- NN 4 g07 g12 g12 g15

AP PN 1 a15

AP QL 1 g12

AT AP AP21 AP22 4 (=2*2) a04 j19

BEDS BEDZ 16 a05 a07 a10 a12
g01 g02 g07 h17
k02 k07 k08 k09
k09 k13 k14 k16

43

CD OD 1 g19

CS IN 1 h12

CS WP 1 j12

DT CS 1 h17

IN TO 1 h09

IN NN NNU21 NNU22 6 (=3*2) a13 a14 j20

IN NN TO TO31 TO32 TO33 3 (=1*3) j06

JJ IN 1 a07

JJ NN 1 g07

JJ RB 1 k01

JJ VBG 1 a04

JJ VBD 1 a06

JJ VBN 1 j15

JJT NN 2 a16 a17

NN AP 4 a13 j15 j16 j20

NN JJ 1 a20

NN NP 6 a07 a15 a15 h05
j12 k03

NN NR 1 h07

NN RB 1 h04

NN VB 1 h09

NN &FW 3 g06 g16 g16

NN RP 1 g07

NNP NR 3 g01 k11 k15

NNS NP 1 a10

NNS UH 1 k10

NNS VBZ 2 g09 g14

44

NT XNOT 8 a08 a19 j08 j15
k14 k15 k19 k20

PN CD1 1 a13

RB ABN 1 k15

RB AP 1 h12

RB ATI 1 h12

RB IN 1 k11

RB NN 1 a13

RB QL 2 g16 g19

RB RP 1 j18

RI IN 1 g09

VB JJ 1 j01

VBD VBN 2 a03 k07

VBG JJ 4 g12 h16 j17 k12

VBG NN 3 h08 h01 k03

VBN VB 1 a05

VBN VBD 3 j18 k03 k18

VBZ NNS 1 j01

WP WDT 1 g13

Total 50 type pairs 108 tags 101 citations

According to the CLAWS standard, the tagging success rate is 95.09
per cent, with an error rate of 4.91 per cent (108/2202). Some of the
errors are caused by incompatibility of the tagsets between the two
corpora, eg NT (AGTS) vs XNOT (CLAWS), NN (AGTS) vs &FW
(CLAWS), BEDS (AGTS) vs BEDZ (CLAWS), and idiomatic patterns
such as AT AP (AGTS) vs AP21 AP22 (CLAWS), IN NN (AGTS)
vs NNU21 NNU22 (CLAWS) and IN NN TO (AGTS) vs TO31
TO32 TO33 (CLAWS). Without these errors, the success rate can be
as high as 96.91 per cent (68/2202). These errors can easily be avoided

45

by adding information to the current versions of special wordlists and/or
pattern lists in the AGTS System and changing those part-of-speech tags
to conform with the LPC or LOB tagset.

Table 3: The distribution of tagging errors

No. \ Text a g h j k

01 0 2 1 2 1

02 0 1 0 0 1

03 1 0 0 0 3

04 3 0 1 0 0

05 2 0 1 0 0

06 1 1 0 3 0

07 3 4 1 0 2

08 1 0 2 1 1

09 0 2 2 0 2

10 2 0 0 0 1

11 0 0 0 0 2

12 1 4 3 2 1

13 5 1 0 0 1

14 2 1 0 0 2

15 3 1 0 3 3

16 1 3 1 1 1

17 1 0 2 1 0

18 0 0 0 2 1

19 1 2 0 2 1

20 1 0 0 3 1

46

Total =108
tags

28 tags 22 tags 14 tags 20 tags 24 tags

There are 39 fully correct sentences (sentences with the value 0 in the
above figure) vs 61 erroneous sentences. However, if the six types of
errors resulting from the incompatibility of the two tagsets are not
counted, 15 sentences can be added to the number of the fully correct
sentences, making the total number of the correct sentences 54 out of
100.

In any case, for the parsing, there is a need for manual post-editing
of the tagged sentences as an output from the tagging by the AGTS
System, because of the tagging errors and some typographical errors
due to the slight difference between the tagsets of the LPC and the
JDEST Corpora.

7 Conclusions
The tagging success rate of the AGTS System is above 95 per cent,
according to the LOB tagset, subject to the difference of subjects and
types of texts processed. Its average correction rate is over 96 per cent,
according to its own tagset. This result is very similar to the results
of the Lancaster CLAWS tagger and other probabilistic taggers around
the world. To a certain extent, this has provided evidence of the feasibility
of the Markov model for statistics-based tagging programs and also laid
a foundation for further statistical parsing, although statistical parsing
approaches are different from tagging.

Acknowledgment
We would like to thank Prof. Roland Sussex of the University of
Queensland for his insightful comments to the paper.

References
Aarts, Jan and Wilhem Meijs (eds). 1990. Theory and Practice in Corpus

Linguistics. Amsterdam: Rodopi.
Atwell, Eric. 1987. Constituent-likelihood grammar. In R. Garside, G.

Leech, and G. Sampson (eds). The Computational Analysis of
English, 57–65. London: Longman.

47

Brill, Eric and Mitch Marcus. 1992. Tagging an unfamiliar text with
minimal human supervision. In Proceedings of the International
Workshop on Fundamental Research for the Future Generation of
Natural Language Processing, 112–120. Manchester: Centre for
Computational Linguistics, UMIST.

Church, Ken. 1988. A stochastic parts program and noun phrase parser
for unrestricted text. In Proceedings of the 2nd Conference on
Applied Natural Language Processing. Association for Computa-
tional Linguistics, 136–143.

Cutting, Doug, Kupiec, James, Pedersen, Jan and Peter Sibun. 1993. A
practical part-of-speech tagger. Palo Alto: Xerox Research Centre.

De Rose, Steve. 1991. An analysis of probabilistic grammatical tagging
methods. In S. Johansson and A-B. Stenström (eds) English com-
puter corpora, 9–13. Berlin: Mouton de Gruyter.

Garside, Roger. 1987. The CLAWS word-tagging system. In R. Garside,
G. Leech, Geoffrey and G. Sampson (eds). The Computational
Analysis of English, 30–41. London: Longman.

Garside, Roger, Leech, Geoffrey and Geoffrey Sampson (eds). 1987. The
Computational Analysis of English. London: Longman.

Johansson, Stig and Anna-Brita Stenström, (eds). 1991. English computer
corpora: Selected papers and research guide. Berlin and New
York: Mouton de Gruyter.

Qiao, Hong Liang. 1997. T-tag oriented parsing. PhD. Thesis. Brisbane:
University of Queensland.

Sampson, Geoffrey. 1983. Probabilistic models of analysis. In R. Garside,
G. Leech and G. Sampson (eds). The Computational Analysis of
English, 16–29. London: Longman.

Souter, Clive and Eric Atwell (eds). 1993. Corpus-based Computational
Linguistics. Amsterdam: Rodopi.

Svartvik, Jan (ed). 1992. Directions in corpus linguistics. Berlin: Mouton
de Gruyter.

48

